Challenges in Decoding Consumer Behavior with Data Science

Author:

Chkoniya Valentina

Abstract

Decoding the ever-evolving consumer behavior is one of the biggest challenges faced by marketers around the world. The future of consumer behavior research is put into question by the advances in data science. Today, when consumers are all the time exposed to new technologies, trends such as facial recognition, artificial intelligence, and voice technology did not advance as rapidly as predicted, marketing intelligence gained a significant share of the spotlight. This paper gives an overview of possible ways to anticipate consumer data intelligence development from the perspectives of a robust data set and deep artificial intelligence expertise for better understanding, modeling, and predicting consumer behavior. Showing that marketing cannot happen in isolation in the era of digital overexposure, it requires a deeper understanding of consumer behavior. Data scientists, analysts, and marketers around the world have to work together to increase consumer loyalty, grow revenue, and improve the predictiveness of their models and effectiveness of their marketing spend. Efficiently integrating consumer behavior data into marketing strategies can help companies improve their approach towards attracting and winning the diverse and dynamic consumer segments and retaining them. This synthesis of current research will be helpful to both researchers and practitioners that work on the use of data science to understand and predict consumer behavior, as well as those making long-range planning marketing decisions.

Publisher

EUSER

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Feature Engineering for Predicting Consumer Purchase Behavior: A Comprehensive Analysis;Communications in Computer and Information Science;2024

2. Subjective Well-Being and Data Science;Encyclopedia of Quality of Life and Well-Being Research;2023

3. Data Science and Quality of Life;Encyclopedia of Quality of Life and Well-Being Research;2023

4. Is the shopping list a guarantee for rational consumer behaviour?;Human Technology;2022-12-28

5. Subjective Well-Being and Data Science;Encyclopedia of Quality of Life and Well-Being Research;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3