Defect structure of high-resistance CdTe:Cl single crystals and MoOx/CdTe:Cl/MoOx heterostructures according to the data of high-resolution X-ray diffractometry

Author:

Fodchuk I.M., ,Kuzmin A.R.,Hutsuliak I.I.,Borcha M.D.,Kotsyubynsky V.O., , , ,

Abstract

Clorine doped CdTe single crystals (CdTe:Cl) were grown by the traveling heater method. MoO x /CdTe:Cl/MoO x films were deposited using the reactive magnetron sputtering technique. The defect structure of the obtained single crystals and heterostructures was investigated using high-resolution X-ray diffractometry. The optimized models of dislocation systems in the CdTe:Cl single crystals were constructed based on the Thompson tetrahedron. The distribution of the intensity of diffracted X-rays as a function of reciprocal space coordinates and rocking curves was analyzed using the kinematic theory of X-ray scattering in real crystals. The experimental and theoretically predicted values of the helical dislocation densities in the CdTe:Cl and MoO x /CdTe:Cl crystals with perfect and mosaic structures were compared. Two-fold increase in the dislocation concentration in the MoO x /CdTe:Cl heterostructures as a result of compression deformations of the CdTe:Cl crystal lattice was found. The ~0.1 μm thick transition deformed layer at the boundary between the MoO x film and CdTe:Cl single crystal significantly affects the electrical and spectroscopic properties of the obtained systems as the materials for γ-radiation detection.

Publisher

National Academy of Sciences of Ukraine (Co. LTD Ukrinformnauka) (Publications)

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3