Analytical Modeling of the Interaction of a Four Implant-Supported Overdenture with Bone Tissue

Author:

Pelekhan BohdanORCID,Dutkiewicz Maciej,Shatskyi Ivan,Velychkovych AndriiORCID,Rozhko MykolaORCID,Pelekhan Liubomyr

Abstract

Today, an interdisciplinary approach to solving the problems of implantology is key to the effective use of intraosseous dental implantations. The functional properties of restoration structures for the dentition depend significantly on the mechanical stresses that occur in the structural elements and bone tissues in response to mastication loads. An orthopedic design with a bar fixation system connected to implants may be considered to restore an edentulous mandible using an overdenture. In this study, the problem of the mechanics of a complete overdenture based on a bar and four implants was formulated. A mathematical model of the interaction between the orthopedic structure and jawbone was developed, and a methodology was established for the analytical study of the stress state of the implants and adjacent bone tissue under the action of a chewing load. The novelty of the proposed model is that it operates with the minimum possible set of input data and provides adequate estimates of the most significant output parameters that are necessary for practical application. The obtained analytical results are illustrated by two examples of calculating the equivalent stresses in implants and the peri-implant tissue for real overdenture designs. To carry out the final assessment of the strength of the implants and bone, the prosthesis was loaded with mastication loads of different localization. In particular, the possibilities of loading the prosthesis in the area of the sixth and seventh teeth were investigated. Recommendations on the configuration of the distal cantilever of the overdenture and the acceptable level and distribution of the mastication load are presented. It was determined that, from a mechanical point of view, the considered orthopedic systems are capable of providing long-term success if they are used in accordance with established restrictions and recommendations.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3