Abstract
This article is devoted to a theoretical evaluation of the transient behavior of a light emitting diode with a resonant cavity called the resonant cavity enhanced light emitting diode (RCELED). The used analytical model is based on applying the convolution theorem for a step input signal and the transfer function of RCELED in the presence of photon recycling. Influence of the efficiency of extraction due to photon recycling on the output optical power is analyzed. The target parameters characterizing the transient behavior are investigated. A traditional light emitting diode with no photon recycling is compared to a diode with photon recycling. The obtained results show the improvement of the output optical power and the rise time with the increase of extraction efficiency and in the presence of photon recycling in the light emitting diodes. The light emitting diode considered here reaches the highest steady state output power within 2 ns. Therefore this diode model may be used for fast speed and high optical gain applications such as in thermal imaging systems and short reach optical interconnects.
Publisher
National Academy of Sciences of Ukraine (Co. LTD Ukrinformnauka) (Publications)
Subject
Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Science in 2025-2027 and the SPQEO journal;Semiconductor Physics, Quantum Electronics and Optoelectronics;2024-03-12
2. Achievements and prospects: 25 years of SPQEO journal;Semiconductor Physics, Quantum Electronics and Optoelectronics;2023-12-05