Optoelectronic Simulations of InGaN-Based Green Micro-Resonant Cavity Light-Emitting Diodes with Staggered Multiple Quantum Wells

Author:

Hsieh Tsau-Hua12,Huang Wei-Ta34ORCID,Hong Kuo-Bin4,Lee Tzu-Yi3,Bai Yi-Hong3,Pai Yi-Hua3,Tu Chang-Ching4,Huang Chun-Hui2,Li Yiming1ORCID,Kuo Hao-Chung34ORCID

Affiliation:

1. Department of Electrical and Computer Engineering, Institute of Communications Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan

2. Technology Development Center, InnoLux Corporation, Hsinchu 35053, Taiwan

3. Department of Photonics, Institute of Electro-Optical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan

4. Semiconductor Research Center, Hon Hai Research Institute, Taipei 11492, Taiwan

Abstract

In this research, we compared the performance of commercial μ-LEDs and three-layered staggered QW μ-LED arrays. We also investigated the self-heating effect. We proposed a green micro-resonant cavity light-emitting diode (µ-RCLED) that consists of a three-layer staggered InGaN with multiple quantum wells (MQWs), a bottom layer of nanoporous n-GaN distributed Bragg reflectors (DBRs), and a top layer of Ta2O5/SiO2 DBRs. We systematically performed simulations of the proposed µ-RCLEDs. For the InGaN MQWs with an input current of 300 mA, the calculated wavefunction overlaps are 8.8% and 18.1% for the regular and staggered structures, respectively. Furthermore, the staggered MQWs can reduce the blue-shift of electroluminescence from 10.25 nm, obtained with regular MQWs, to 2.25 nm. Due to less blue-shift, the output power can be maintained even at a high input current. Conversely, by employing 6.5 pairs of Ta2O5/SiO2 DBRs stacks, the full width at half maximum (FWHM) can be significantly reduced from 40 nm, obtained with ordinary µ-LEDs, to 0.3 nm, and a divergence angle smaller than 60° can be obtained. Our simulation results suggest that the µ-RCLEDs can effectively resolve the wavelength instability and color purity issues of conventional µ-LEDs.

Funder

Ministry of Science and Technology in Taiwan

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3