Charge distribution functions for characterization of complex systems

Author:

Gun’ko V. M.,

Abstract

A set of characteristics calculated within the scope of quantum chemistry methods may be assigned to local ones changing from atom to atom in complex systems. Simple averaging of the related values gives rather poor characteristics of the systems because various fractions of certain atoms can have different surrounding and, therefore, different characteristics, which may not correspond to the average one. The aim of this study is searching a more appropriate pathway to transform local characteristics, e.g., atomic charges, into nonlocal ones based on the distribution functions. The distribution functions of atomic charges (CDF) could be considered as a simple tool to analyze nonuniform complex systems since specificity of different fractions of atoms reflects in the CDF shape. As a whole, the approach accuracy and efficiency depend on the quality and appropriateness of molecular and cluster models used, as well as on the quantum chemical methods (ab initio, DFT, and semiempirical) and the basis sets used. Nanosystems with dozens of molecules (clusters, domains, nanodroplets), modelling a liquid phase or interfacial layers, and solid nanoparticles of almost real sizes (> 40 units, > 2 nm) may be considered as more appropriate models of real systems than the models with several molecules and small clusters (< 20 units, < 1 nm). This approach has been applied to a set of representatives of such various materials as activated carbon, porous and nanoparticulate silicas unmodified and modified interacting with nitrogen, methane, water, human serum albumin (HSA) binding doxorubicin molecules. This approach may give information useful upon the analysis of any complex system.

Publisher

National Academy of Sciences of Ukraine (Co. LTD Ukrinformnauka)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Quantum-chemically computed integral characteristics of complex nanomaterials;Himia, Fizika ta Tehnologia Poverhni;2021-09-30

2. Effects of silica cluster size and charge state on integral characteristics;Himia, Fizika ta Tehnologia Poverhni;2021-06-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3