Abstract
Development of theoretical tools to analyze electronic structure of complex nanomaterials depending on features of spatial and chemical organizations of different phases is of interest from both practical and theoretical points of view. Therefore, in this work, an approach based on computations of the atomic charge distribution functions (CDF) in parallel to calculations of the distribution functions of the chemical shifts (SDF) of protons is developed to be applied to a set of complex oxide and carbon nanomaterials. Binary nanooxides (alumina/silica, titania/silica), 3d-metal-doped anatase, activated carbon, carbon nanotube, fullerene C60, graphene oxide, and N-doped Kagome graphene are considered here as representatives of different classes of nanomaterials. The analyses of the CDF and SDF as nonlocal characteristics of certain kinds of atoms in complex systems provide a deeper insight into electronic structure features depending on composition of the materials, guest phase-doped host phase at various amounts of dopants, structure of O- and OH-containing surface sites, amounts and organization of adsorbed water, formation of neutral and charged surface functionalities, bonding of solvated ions, etc. The CDF of metal and hydrogen atoms (electron-donors) are more sensitive to the mentioned factors than the CDF of O, N, and C atoms (electron acceptors) in various systems. As a whole, the use of the CDF and SDF in parallel expands the tool possibility in detailed analysis of the structural and interfacial effects in dried and wetted complex nanomaterials.
Publisher
National Academy of Sciences of Ukraine (Co. LTD Ukrinformnauka) (Publications)
Subject
Materials Chemistry,Colloid and Surface Chemistry,Physical and Theoretical Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces,Ceramics and Composites
Reference45 articles.
1. Iler R.K. The Chemistry of Silica. (Chichester: Wiley, 1979).
2. Legrand A.P. (Ed.) The Surface Properties of Silicas. (New York: Wiley, 1998).
3. Bergna H.E., Roberts W.O. (Eds.) Colloidal Silica: Fundamentals and Applications. (Boca Raton: CRC Press, 2006).
4. Adamson A.W., Gast A.P. Physical Chemistry of Surface. 6th edition. (New York: Wiley, 1997).
5. Tapia O., Bertrán J. (Eds.) Solvent Effects and Chemical Reactivity. (New York: Kluwer Academic Publishers, 2000).
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献