Deep neural network based on generalized neo-fuzzy neurons and its learning based on backpropagation

Author:

Y BodyanskiyORCID, ,T AntonenkoORCID,

Abstract

Modern approaches in deep neural networks have a number of issues related to the learning process and computational costs. This article considers the architecture grounded on an alternative approach to the basic unit of the neural network. This approach achieves optimization in the calculations and gives rise to an alternative way to solve the problems of the vanishing and exploding gradient. The main issue of the article is the usage of the deep stacked neo-fuzzy system, which uses a generalized neo-fuzzy neuron to optimize the learning process. This approach is non-standard from a theoretical point of view, so the paper presents the necessary mathematical calculations and describes all the intricacies of using this architecture from a practical point of view. From a theoretical point, the network learning process is fully disclosed. Derived all necessary calculations for the use of the backpropagation algorithm for network training. A feature of the network is the rapid calculation of the derivative for the activation functions of neurons. This is achieved through the use of fuzzy membership functions. The paper shows that the derivative of such function is a constant, and this is a reason for the statement of increasing in the optimization rate in comparison with neural networks which use neurons with more common activation functions (ReLU, sigmoid). The paper highlights the main points that can be improved in further theoretical developments on this topic. In general, these issues are related to the calculation of the activation function. The proposed methods cope with these points and allow approximation using the network, but the authors already have theoretical justifications for improving the speed and approximation properties of the network. The results of the comparison of the proposed network with standard neural network architectures are shown

Publisher

National Academy of Sciences of Ukraine (Co. LTD Ukrinformnauka)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3