Hyperspectral Image Classification Based on 3D–2D Hybrid Convolution and Graph Attention Mechanism

Author:

Zhang Hui,Tu Kaiping,Lv Huanhuan,Wang Ruiqin

Abstract

AbstractConvolutional neural networks and graph convolutional neural networks are two classical deep learning models that have been widely used in hyperspectral image classification tasks with remarkable achievements. However, hyperspectral image classification models based on graph convolutional neural networks using only shallow spectral or spatial features are insufficient to provide reliable similarity measures for constructing graph structures, limiting their classification performance. To address this problem, we propose a new end-to-end hyperspectral image classification model combining 3D–2D hybrid convolution and a graph attention mechanism (3D–2D-GAT). The model utilizes the collaborative work of hybrid convolutional feature extraction module and GAT module to improve classification accuracy. First, a 3D–2D hybrid convolutional network is constructed and used to quickly extract the discriminant deep spatial-spectral features of various ground objects in hyperspectral image. Then, the graph is built based on deep spatial-spectral features to enhance the feature representation ability. Finally, a network of graph attention mechanism is adopted to learn long-range spatial relationship and distinguish the intra-class variation and inter-class similarity among different samples. The experimental results on three datasets, Indian Pine, the University of Pavia and Salinas Valley show that the proposed method can achieve higher classification accuracy compared with other advanced methods.

Funder

Department of Education of Zhejiang Province

Huzhou Municipal Science and Technology Bureau

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3