Bionanotechnology of Selenite Ions Recovery into Nanoselenium by Probiotic Strains of Lactobacteria and Tolerance of Lactobacteria to Sodium Selenite

Author:

Tymoshok N.O.,Demchenko О.А.,Bityutskyy V.S.,Tsekhmistrenko S.I.,Kharchuk M.S.,Tsekhmistrenko О.S.

Abstract

Green synthesis of nanoparticles (NPs) using living cells is a promising and new tool in bionanotechnology. Chemical and physical methods are used to synthesize NPs, but biological methods are preferred because of their environmentally friendly, clean, safe, cost-effective, simple, and efficient sources for high productivity and purity. Aim. To investigate the processes of bioreduction of selenite ions into nanoselenium by probiotic strains of lactobacilli Lactobacillus plantarum IMV B-7679 and L. casei IMV B-7280. Methods. Cultivation of lactobacilli L. plantarum IMV B-7679 and L. casei IMV B-7280 was carried out in vials (500 cm3) on a rotary shaker (220 rpm) at 30 °C for 2 days on the Man, Rogosa, and Sharpe (MRS) broth nutrient medium. Sodium selenite was additionally added to the environment in different concentrations from 1 to 30 ppm by Se. The number of viable bacterial cells in 1 mL of suspension was determined by the method of limiting dilutions in the case of sowing aliquots on a nutrient medium containing 0.2% agar-agar. Cultures of L. plantarum IMV B-7679 or L. casei IMV B-7280 were grown in the liquid MRS broth medium with low pH in the presence or absence of Na2SeO3. The concentration of sodium selenite ranged from 1 to 30 ppm by Se level. The number of microorganisms was determined by inoculation (0.1 mL of suspension) in dense media on cups with MRS agar medium, and the seeding dose was 107 cells/Petri dish. The tolerance of lactobacilli to the selenite ions was evaluated by the decrease in the number of CFU when sowing aliquots taken from culture samples grown in the presence or absence of selenite. The results of the experiments were presented in CFU and transferred to Log CFU/cm3. The characteristics of Nano-Se were studied using transmission electron microscopy (TEM). Results. It was found that after 48 h incubation in an MRS medium with the addition of sodium selenite from 1 to 30 ppm, the culture of L. plantarum IMV В-7679 was the most resistant. Thus, enrichment of the culture medium with 30 ppm of Se in the Na2SeO3 composition led to a decrease in the number of L. plantarum IMV B-7679 to 5.17 ± 0.09 Log CFU/cm3 against 4.41 ± 0.11 Log CFU/cm3 for L. casei IMV B-7280 in the control. The use of lower concentrations (1—3 ppm of Se in Na2SeO3) did not affect the change in morphology and cultural properties of L. plantarum IMV B-7679. The ability of L. casei IMV B-7280 and L. plantarum IMV B-7679 cultures to grow on MRSA nutrient medium in the presence of 3 ppm Se was shown. Higher tolerance to sodium selenite was found for L. plantarum IMV B-7679. Thus, increasing the concentration to 30 ppm of Se in the form of Na2SeO3 led to a decrease in the viability of only the culture of L. casei IMV B-7280. That is, the studied lactobacilli showed different ability to grow in the presence of selenite ions. The formation of round electron-dense granules sizing from 30 nm to 250 nm was observed using TEM. Both probiotic strains showed the ability to restore selenite ions with the accumulation of intracellular Nano-Se and the release of Nano-Se into the culture medium, which was accompanied by color shifts from yellowish to red-brown. The partial destruction of L. casei IMV B-7280 cells under the influence of oxyanions was revealed, which was accompanied by the release of culture-synthesized electron-dense Nano-Se particles. Conclusions. The optimal conditions for the growth of L. plantarum IMV B-7679 and L. casei IMV B-7280 in the presence of Na2SeO3 were established, and it was proved that lactobacilli have different abilities to grow in the presence of selenite ions. The obtained data indicate that the investigated probiotic strains showed the ability to restore selenite ions along with the accumulation of intracellular Nano-Se and the release of Nano-Se into the culture medium.

Publisher

National Academy of Sciences of Ukraine (Co. LTD Ukrinformnauka) (Publications)

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3