CHANGES IN ELECTROMAGNETIC WAVE POLARIZATION RESULTING FROM ITS REFLECTION AT A UNIAXIAL PLASMONIC METASURFACE ON TOP OF A DIELECTRIC LAYER

Author:

Beletskii M., ,Popovych I.,

Abstract

Subject and Purpose. The analysis of the electromagnetic waves’ polarizational transformations that may accompany their reflection from a metasurface is of considerable scientific and practical interest from the point of possibilities for improving characteristics of nanoelectronic and optical devices, and creating novel types of these. This work has been aimed at finding the conditions for efficient conversion of a p-polarized electromagnetic wave incident upon a uniaxial plasmonic metasurface at the boundary of a dielectric layer, into a wave of s-polarization. Methods and Methodology. The effects of conversion of p-polarized electromagnetic waves incident upon a uniaxial plasmonic metasurface, into s-polarized waves were explored through numerical modeling. The approach has allowed determining the wave frequencies and thicknesses of the dielectric layer best suitable for ensuring full conversion. Results. The presence of a uniaxial plasmonic metasurface on top of a dielectric layer can provide for full conversion of an incident p-polarized electromagnetic wave into a wave of s-polarization. As has been established, the effect takes place if the plane of incidence of the p-polarized wave makes an acute angle with the principal axis of the plasmonic metasurface. Another finding is that the full conversion is possible for a variety of permittivity values of the dielectric layer. Conclusions. The uniaxial plasmonic metasurface placed on a dielectric layer is characterized by unique reflective properties. It can have a noticeable impact on polarization of the p-polarized wave’s incident upon the layer. Dielectric layers provided with uniaxial metasurfaces can be used for creating optical and nanoelectronic devices of new types.

Publisher

National Academy of Sciences of Ukraine (Co. LTD Ukrinformnauka) (Publications)

Subject

Electrical and Electronic Engineering,Space and Planetary Science,Physics and Astronomy (miscellaneous),Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3