Photoperiod-induced alterations in biomarkers of oxidative stress in rats of different ages and individual physiological reactivity

Author:

Kurhaluk N.ORCID, ,Tkachenko H.ORCID,Partyka T.ORCID, ,

Abstract

This study was undertaken to investigate the photoperiod- and age-related variability between the activity of oxidative stress biomarkers in rats with different physiological reactivity estimated by different resistance to hypoxia. The study was carried out on 96 male Wistar rats divided into 16 groups based on resistance to hypoxia (LR, low resistance, HR, high resistance) and age, i.e. 6 and 21 months. The studies were conducted at four photoperiod points: winter (January), spring (March), summer (July), and autumn (October). Lower levels of oxidative stress biomarkers (P<0.05) were observed in the younger rats when compared to older rats, as well as in HR rats compared to LR rats. The levels of lipid peroxidation end product, 2-thiobarbituric acid reactive substances (TBARS) as the major indicator of oxidative stress, were found to increase with age, and summer resulted in further elevation compared to other seasons. Also, oxidative stress biomarkers were lower (P<0.05) in winter than in other seasons, especially in the HR rats. TAC level in the hepatic tissue of the 6 months aged rats was significantly higher (P<0.05) elevated when compared to older rats. A similar higher TAC level was in the hepatic tissue of HR rats compared to the LR rats. The adult rats with HR maintained TAC with minimal fluctuations throughout the year. It should be noted that the difference in TAC was higher for the groups of the adult animals with HR in winter, spring, and summer, which may indicate effective mechanisms preventing the formation of reactive oxygen species and systems of elimination thereof.

Publisher

National Academy of Sciences of Ukraine (Co. LTD Ukrinformnauka) (Publications)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3