Applying stochastic simulation to study defect formation in EUV photoresists

Author:

Melvin Lawrence S.ORCID,Welling Ulrich,Kandel Yudhishthir,Levinson Zachary A.,Taoka Hironobu,Stock Hans-Jurgen,Demmerle Wolfgang

Abstract

Abstract Extreme ultra-violet lithography lithography resolves features below 11 nm. However, photonic and atomic variations at these photon energies and dimensions lead to less than 1:109 potential stochastic defects causing device failures in stable manufacturing processes. This study investigates a methodology intended to identify root causes of stochastic defects with potential mitigation paths. Simulation techniques using pseudo random numbers are used to identify failing photonic and chemical event or distribution combinations. Failing combinations occurring in many photon-chemical configurations are thought to have potential mitigation methodologies. Photonic effects demonstrated significant impacts on stochastic defect formation with approximately 73% of the photon seeds resulting in a failure in at least 60% of the trials. The material results were mixed with large failure quantities that demonstrated low impacts. The photonic shot noise based failures were dominating in this study and these failures will not be mitigated by material enhancement alone.

Publisher

IOP Publishing

Subject

General Physics and Astronomy,Physics and Astronomy (miscellaneous),General Engineering

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3