Antiferromagnetic domain formation and spin frustration induced by adjacent paired screw dislocations in 10 monolayer-thick Cr(001) films

Author:

Kawagoe Takeshi,Suga Shigemasa

Abstract

Abstract We investigated the growth and surface morphology of 10 monolayer (ML)-thick Cr(001) films on clean Au(001) surfaces. High quality epitaxial Cr(001) films with large atomically flat terraces and distinct surface states were successfully fabricated through growth at 300 K and subsequent post-annealing at 520 K. At 300 K, spin-polarized scanning tunneling microscopy images of both the topological and magnetic structures of this Cr film were obtained. The magnetic images exhibited the following features: (1) The layered antiferromagnetic (AF) order appeared in adjacent terraces and one ML-depth shallow hole in the terraces; (2) significant spin frustrations induced by adjacent paired screw dislocations caused the AF domain formation with 90 degrees quantum axis rotation and a large spin frustration area, not always limited in the vicinity of screw dislocations. The feature (2) was qualitatively reproduced by the micromagnetic simulation. These findings may be essential for the further development of spin-electronics utilizing thin AF films.

Funder

JSPS KAKENHI

Publisher

IOP Publishing

Subject

General Physics and Astronomy,General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Growth and surface magnetism of ultrathin Cr(001) films;Japanese Journal of Applied Physics;2024-02-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3