General nature of the step-induced frustration at ferromagnetic/antiferromagnetic interfaces: topological origin and quantitative understanding

Author:

Chen X,Ji T Z,Sun L,Miao B F,Millev Y TORCID,Ding H FORCID

Abstract

Abstract We present a study of the magnetic configuration due to step-induced magnetic frustration at ferromagnetic/antiferromagnetic (FM/AFM) interfaces. At a substrate monatomic step edge, a 180° domain wall emerges. A physically appealing form for the thickness dependence of the domain wall width is obtained. It follows a universal behaviour in the whole thickness range, from ultrathin film to bulk and in both cases of an AFM domain wall on top of the FM layer and a FM domain wall on top of an AFM substrate. In the ultrathin limit of the capping layer, the domain wall grows linearly with the slope depending only on the ratio of the inter-layer and intra-layer Heisenberg exchange constants, regardless of the presence of magneto-crystalline anisotropy. These findings are in good agreement with previous experimental observations. As the thickness grows beyond the ultrathin regime, the corresponding thickness dependence departs from linearity and tends to its bulk value. The analytical insights are supported by conclusive numerical simulations of two independent varieties, namely, the Monte Carlo method which also includes the growth kinetics and the object oriented micromagnetic framework based micromagnetic simulations. While the quantitative details of the study are naturally dependent on the specific material parameters of the complex magnetic system, the global features of the spin texture in the capping layer are dictated by the topological step-edge defect. The latter in itself is quantifiable by a winding number of ± 1 2 .

Funder

National Key Research & Development Program of China

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3