Effects of In composition on the surface morphology of self-assembled In x Ga1−x Sb/GaAs quantum dots

Author:

Kawazu Takuya

Abstract

Abstract We investigate the influence of the In composition x on the surface morphology of In x Ga1−x Sb quantum dots (QDs) grown by molecular beam epitaxy. In x Ga1−x Sb QDs are successfully formed at x ≤ 0.5 on GaAs(100) and x ≤ 0.6 on GaAs(311)A, where the QD size is larger and their density is lower on GaAs(100) than those on GaAs(311)A at any x. The shape and density n QD of In x Ga1−x Sb QDs on GaAs(100) is more significantly affected by x than those on GaAs(311)A; the aspect height-to-radius ratio h/r increases about twofold on GaAs(100) with increasing x, but the increase of h/r is only 1.1 times on GaAs(311)A. As x increases from 0.0 to 0.5, n QD decreases by a factor of 150 on GaAs(100), while the decrease of n QD is only 7 times on GaAs(311)A. The comparison between the experiment and a rate equation model suggests that the hopping barrier energy between surface sites depends linearly on x.

Publisher

IOP Publishing

Subject

General Physics and Astronomy,Physics and Astronomy (miscellaneous),General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3