Author:
Yamaguchi Masato,Shiojiri Daishi,Iida Tsutomu,Hirayama Naomi,Imai Yoji
Abstract
Abstract
The narrow-gap semiconductor α-SrSi2 is a promising candidate for low-temperature thermoelectric applications with low environmental load. The only experimental report in which α-SrSi2 is reported to have n-type conductivity is one where it had been doped with yttrium. To further clarify the effects of impurities, theoretical studies are needed. The α-SrSi2 has a very narrow band gap (∼13–35 meV), causing difficulties in the accurate calculation of the electronic and thermoelectric properties. In our previous study, we overcame this problem for undoped α-SrSi2 using hybrid functional theory. We used this method in this study to investigate the structures, energetic stabilities, electronic structures, and thermoelectric properties of Y-doped α-SrSi2. The results indicate that substitution at Sr-sites is energetically about two times more stable than that at Si-sites. Furthermore, negative Seebeck coefficients were obtained at low temperatures and reverted to p-type with increasing temperature, which is consistent with the experimental results.
Funder
Japan Power Academy
Japan Society for the Promotion of Science
Subject
General Physics and Astronomy,Physics and Astronomy (miscellaneous),General Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献