Nanoarchitectonics Intelligence with atomic switch and neuromorphic network system

Author:

Tsuchiya TakashiORCID,Nakayama Tomonobu,Ariga Katsuhiko

Abstract

Abstract An emerging concept of “nanoarchitectonics” has been proposed as a way to apply the progress of nanotechnology to materials science. In the introductory parts, we briefly explain the progress in understanding materials through nanotechnology, the overview of nanoarchitectonics, the effects of nanoarchitectonics on the development of functional materials and devices, and outline of nanoarchitectonics intelligence as a main subject of this review paper. In the following sections, we explain the process of constructing intelligent devices based on atomic switches, in which the behavior of atoms determines the device functions, by integrating them with nanoarchitectonics. The contents are categorized into (i) basic operation of atomic switch, (ii) artificial synapse, (iii) neuromorphic network system, (iv) hetero-signal conversion, (v) decision making device, and (vi) atomic switch in practical uses. The atomic switches were originally relatively simple ON/OFF binary-type electrical devices, but their potential as multi-level resistive memory devices for artificial synapses and neuromorphic applications. Furthermore, network-structured atomic switches, which are complex and have regression pathways in their structure and resemble cranial neural circuits. For example, A decision-making device that reproduces human thinking based on a principle different from brain neural circuits was developed using atomic switches and proton-conductive electrochemical cells. Furthermore, atomic switches have been progressively developed into practical usages including application in harsh environments (e.g. high temperature, low temperature, space). Efforts toward information processing and artificial intelligence applications based on nanoarchitectonics tell remarkable success stories of nanoarchitectonics, linking the control of atomic motion to brain-like information control through nanoarchitecture regulations.

Funder

Japan Society for the Promotion of Science

Yazaki Memorial Foundation for Science and Technology

Publisher

IOP Publishing

Subject

General Physics and Astronomy,General Engineering

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3