Disease Diagnosis with Chemosensing, Artificial Intelligence, and Prospective Contributions of Nanoarchitectonics

Author:

Shen Xuechen12,Ariga Katsuhiko12ORCID

Affiliation:

1. Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8561, Japan

2. Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan

Abstract

In modern materials research, nanotechnology will play a game-changing role, with nanoarchitectonics as an overarching integrator of the field and artificial intelligence hastening its progress as a super-accelerator. We would like to discuss how this schema can be utilized in the context of specific applications, with exemplification using disease diagnosis. In this paper, we focus on early, noninvasive disease diagnosis as a target application. In particular, recent trends in chemosensing in the detection of cancer and Parkinson’s disease are reviewed. The concept has been gaining traction as dynamic volatile metabolite profiles have been increasingly associated with disease onset, making them promising diagnostic tools in early stages of disease. We also discuss advances in nanoarchitectonic chemosensors, which are theoretically ideal form factors for diagnostic chemosensing devices. Last but not least, we shine the spotlight on the rise to prominence and emergent contributions of artificial intelligence (AI) in recent works, which have elucidated a strong synergy between chemosensing and AI. The powerful combination of nanoarchitectonic chemosensors and AI could challenge our current notions of disease diagnosis. Disease diagnosis and detection of emerging viruses are important challenges facing society. The parallel development of advanced functional materials for sensing is necessary to support and enable AI methodologies in making technological leaps in applications. The material and structural formative technologies of nanoarchitectonics are critical in meeting these challenges.

Funder

Japan Society for the Promotion of Science

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3