Higher viral load and infectivity increase risk of aerosol transmission for Delta and Omicron variants of SARS-CoV-2

Author:

Riediker Michael,Briceno-Ayala Leonardo,Ichihara Gaku,Albani Daniele,Poffet Deyan,Tsai Dai-Hua,Iff Samuel,Monn Christian

Abstract

BACKGROUND: Airborne transmission of SARS-CoV-2 is an important route of infection. For the wildtype (WT) only a small proportion of those infected emitted large quantities of the virus. The currently prevalent variants of concern, Delta (B1.617.2) and Omicron (B.1.1.529), are characterized by higher viral loads and a lower minimal infective dose compared to the WT. We aimed to describe the resulting distribution of airborne viral emissions and to reassess the risk estimates for public settings given the higher viral load and infectivity. METHOD: We reran the Monte Carlo modelling to estimate viral emissions in the fine aerosol size range using available viral load data. We also updated our tool to simulate indoor airborne transmission of SARS-CoV-2 by including a CO2 calculator and recirculating air cleaning devices. We also assessed the consequences of the lower critical dose on the infection risk in public settings with different protection strategies. RESULTS: Our modelling suggests that a much larger proportion of individuals infected with the new variants are high, very high or super-emitters of airborne viruses: for the WT, one in 1,000 infected was a super-emitter; for Delta one in 30; and for Omicron one in 20 or one in 10, depending on the viral load estimate used. Testing of the effectiveness of protective strategies in view of the lower critical dose suggests that surgical masks are no longer sufficient in most public settings, while correctly fitted FFP2 respirators still provide sufficient protection, except in high aerosol producing situations such as singing or shouting. DISCUSSION: From an aerosol transmission perspective, the shift towards a larger proportion of very high emitting individuals, together with the strongly reduced critical dose, seem to be two important drivers of the aerosol risk, and are likely contributing to the observed rapid spread of the Delta and Omicron variants of concern. Reducing contacts, always wearing well-fitted FFP2 respirators when indoors, using ventilation and other methods to reduce airborne virus concentrations, and avoiding situations with loud voices seem critical to limiting these latest waves of the COVID-19 pandemic.

Publisher

SMW Supporting Association

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3