Test to Determine Sterile Integrity of Wrapped Medical Products at a Probability of Recontamination of 1: 1,000,000

Author:

Dunkelberg Hartmut,Rohmann Susanne

Abstract

Objective.We developed a microbiological test to detect the penetration of airborne microorganisms through the packaging of medical products after sterilization, to meet the requirements of European standard EN 556. We applied this test method to transparent pouches.Design.The microbial-barrier properties of the transparent pouches were determined using the microbial challenge test, in which the package was placed inside an exposure chamber and exposed to a defined aerosol of Saccharomyces cerevisiae. The atmospheric pressure in the chamber was periodically reduced by 0-75 millibars, to simulate weather-dependent pressure changes. Thermoresistant petri dishes filled with nutrient agar were integrated into the transparent pouches before sterilization. The packages were incubated after exposure. They were then opened and examined for colony growth.Results.The number of recontaminated packages per test group (n = 50) depended on the microbial bioload (defined as the number of colony-forming units per plate) to which the packages were exposed and on the size and number of decreases in atmospheric pressure. Results of multiple regression analysis showed a significant increase in the number of recontaminated packages in correlation with the product of the values for microbial bioload and the size and number of decreases in atmospheric pressure. When we analyzed the probability of recontamination of wrapped medical devices after 2 reductions in atmospheric pressure (30 millibars each) and with a surface microbial load of 10 colony-forming units per 64 cm2, we estimated that the frequency of recontamination was 1: 100,000.Conclusion.Multiple regression analysis showed that the proposed microbial challenge test is suitable to determine the probability of package recontamination at the 1: 1,000,000 level.

Publisher

Cambridge University Press (CUP)

Subject

Infectious Diseases,Microbiology (medical),Epidemiology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3