Numerical calculation of bent reinforced concrete elements of rectangular section in the Abaqus software

Author:

Rimshin Vladimir I.ORCID,Amelin Pavel A.ORCID

Abstract

The calculation of building structures to a large extent began to be performed using automated software systems based on the finite element method. An urgent issue of the widespread use of this type of calculation is the accuracy of the calculation results in comparison with experimental data. In this study, by numerical simulation using the Abaqus software package, the stress-strain state of a bent reinforced concrete element of a rectangular cross section is investigated. Numerical modeling of the element is performed by volumetric finite elements, taking into account the non-linear (actual) state diagram of concrete, described by the model of plastic fracture of concrete with damage (CDP). Reinforcement is specified by rod finite elements, with a combination of elastic properties and metal plasticity model. The loading of the beam element in the model is performed statically with the application of concentrated forces at the centers of the thirds of the design span. As a result of the finite element calculation, the distribution of stresses in concrete and reinforcement according to Mises, deformations of finite elements along the main axes, as well as a model of concrete damage with increasing load were obtained. The obtained results showed a high convergence with the experimental data of testing beams for bending along a normal section, which allows using this algorithm for automated finite element analysis in the design of bending reinforced concrete structures.

Publisher

Peoples' Friendship University of Russia

Subject

General Materials Science

Reference20 articles.

1. Karpunin V.G., Golubeva E.A. Computer modeling of building structures. Architecton: Proceedings of Higher Education. 2019;(4). (In Russ.) Available from: http://archvuz.ru/2019_4/16 (accessed: 01.02.2023).

2. Bondarenko V.M., Rimshin V.I. Quasi-linear equations of force resistance and diagram σ–ε of concrete. Structural Mechanics of Engineering Constructions and Buildings. 2014;(6):40–44. (In Russ.)

3. Karpenko N.I., Kolchunov V.I., Travush V.I. Computational model of a complex-stressed reinforced concrete element of a box section during torsion with bending. Scientific Journal of Construction and Architecture. 2021;(2):9–26. (In Russ.)

4. Kryuchkov A.A. Stress-strain state of bent reinforced concrete elements of continuous and composite cross-section based on a refined nonlinear calculation method. Bulletin of the Belgorod State Technological University named after V.G. Shukhov. 2022;(4):82–91. (In Russ.) https://doi.org/10.34031/2071-7318-2021-7-4-82-91

5. Bondarenko V.M., Rimshin V.I. Residual resource of force resistance of damaged reinforced concrete. Bulletin of the RAASN. 2005;(9):119–126. (In Russ.)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. НЕЛИНЕЙНЫЙ АНАЛИЗ МАССИВНЫХ ЖЕЛЕЗОБЕТОННЫХ КОНСТРУКЦИЙ С УЧЕТОМ ТРЕЩИНООБРАЗОВАНИЯ;International Journal for Computational Civil and Structural Engineering;2023-12-26

2. Finite Element for the Analysis of Massive Reinforced Concrete Structures with Cracking;Structural Mechanics of Engineering Constructions and Buildings;2023-12-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3