Estimating the Throwing Power of SS316 when Coupled with AA7075 Through Finite Element Modeling

Author:

Marshall R.S.1,Goff A.2,Sprinkle C.2,Britos A.1,Kelly R.G.1

Affiliation:

1. University of Virginia, 395 McCormick Rd, Charlottesville, VA 22903.

2. Luna Innovations, Inc., 706 Forest St. Suite A, Charlottesville, VA 22903.

Abstract

Galvanic corrosion is common in applications involving a fastener and panel assembly. Often, the fastener is made from a more noble metal and the panel is made from a less noble metal, selected for their respective mechanical properties. The ability for the more noble material to galvanically couple to the panel’s surface as a function of distance is referenced to as “throwing power,” and was the main subject of this research. In this work, SS316 and AA7075 were investigated as the fastener and panel material, respectively. A Ti-6Al-4V fastener and a sol-gel coated SS316 fastener were also considered to determine the impact of different materials on the galvanically driven throwing power. Along with different fastener materials, different fastener geometries were considered as well. Raised fasteners are generally used in tandem with washers, while countersunk fasteners are not in order to remain flush with the surface. The difference between these two geometries on the throwing power was investigated. It was determined that the SS316 washer was the largest contributor to the galvanic current in the raised fastener assembly, due to its large surface area. At distances of two inches away, the SS316 fastener and washer were able to double the natural corrosion rate of AA7075. A countersunk SS316 fastener, with the same total surface area as that of the raised fastener and washer assembly, was seen to lower the throwing power which forced a large amount of current down the fastener hole. Throughout all of the computational tests, the model relies on the generation of accurate electrochemical kinetics measured in solutions of appropriate composition.

Publisher

NACE International

Subject

General Materials Science,General Chemical Engineering,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3