Coupling Fracture Mechanics Experiments and Electrochemical Modeling to Mitigate Environment-Assisted Cracking in Engineering Components

Author:

Harris Zachary D.1ORCID,Marshall Rebecca S.1ORCID,Kelly Robert G.1ORCID,Burns James T.1ORCID

Affiliation:

1. *Department of Materials Science and Engineering, University of Virginia, Charlottesville, Virginia.

Abstract

Environment-assisted cracking (EAC) is a pertinent failure mode for many applications and industries, but the design of robust EAC mitigation strategies can be challenging due to the number of material and environmental factors that affect EAC behavior. In this study, a coupled experimental-modeling approach for designing EAC mitigation strategies in a standard panel-and-fastener geometry is presented. Fracture mechanics-based testing is executed on a high-performance steel (Pyrowear 675) immersed in 0.6 M NaCl to assess the effect of electrode potential and loading rate on EAC susceptibility. Finite element modeling (FEM) is then used to calculate the electrode potential distribution across the panel for four realistic EAC mitigation strategies (anodized fastener, fully coated panel, selectively coated panel, and bare panel/fastener). The FEM and EAC susceptibility data are synthesized to inform the efficacy of each proposed mitigation strategy. Results demonstrate that the anodized fastener and fully coated panel approaches are likely to promote EAC, while the selectively coated panel and all-bare strategies mitigate EAC. The benefits and limitations of this coupled approach for mitigating EAC are then discussed.

Publisher

Association for Materials Protection and Performance (AMPP)

Subject

General Materials Science,General Chemical Engineering,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3