Thermodynamic Probability Analysis of the Effects of Rb on the Corrosion Susceptibility of Cr-Containing Steels for Nuclear Materials Canisters

Author:

Wang Kang1,Demarest Charles R.1,Matthew Asmussen R.2,Scully John R.1,Zhou Bi-Cheng1

Affiliation:

1. Department of Materials Science and Engineering, University of Virginia, 22904 Charlottesville, Virginia.

2. Energy and Environment Directorate, Pacific Northwest National Laboratory, 99354 Richland, Washington.

Abstract

Rubidium (Rb) generated from the β-decay of Kr-85 has been theorized to be corrosive toward steel, specifically in the storage of Kr-85 nuclear waste streams. In the present study, the phase equilibria of RbxCryOz with Rb in dry oxygen and water are investigated to understand a possible pathway to unusual deterioration of the corrosion resistance of canister steels in the presence of Rb. It was found that, in dry oxygen environments, the accumulation of Rb (more than 0.01 mol) can completely consume the Cr in 1 mol of AISI 4130 steel by forming α-Rb2CrO4 and Rb3CrO4 and prevent the formation of protective Cr2O3 scale. In aqueous environments, RbxCryOz are metastable species. In order to investigate their role, the probability of forming various oxides is invoked in order to avoid the all-or-nothing approach to oxide formation typical of E-pH diagram, which only predicts the most stable species dissolved, ionized, or solid ionized. Thus, the probability of forming RbxCryOz was considered and reported herein. It was found RbxCryOz can possess a larger than 7% probability of forming over Cr2O3 in the Rb-rich case and 15% in the Cr-rich case, indicating that it is expected to find a small amount of RbxCryOz in the thermodynamically formed reaction products. Even though Cr2O3 is more stable than RbxCryOz, the protective Cr2O3 scale is likely to have some vulnerability to Rb, leading to one possible route for the decline in the corrosion resistance of steel canisters in aqueous environments. Therefore, from a thermodynamic perspective, the current study supports the hypothesis that Rb can thermodynamically react with Cr in steels and can lead to the formation of RbxCryOz at certain potentials and pH levels, showing the Rb influence of steel corrosion cannot be discounted. The paper considers experimental mixed potential and pH levels observed and their relationship to thermodynamic probability. From this relative corrosion resistance can be assessed in a preliminary way in aqueous environments.

Publisher

Association for Materials Protection and Performance (AMPP)

Subject

General Materials Science,General Chemical Engineering,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3