Pitting Propagation Behavior on Low Alloy AISI 4130 (UNS G41300) Steel Exposed to Various Alkali and Alkaline Earth Metal Chlorides

Author:

Demarest Charles1,Asmussen R. Matthew2,Scully John R.1

Affiliation:

1. *University of Virginia Center for Electrochemical Science and Engineering, The University of Virginia, 395 McCormick Rd, Charlottesville 22903-1738, Virginia.

2. **Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington, DC.

Abstract

This study examined pit propagation to elucidate whether alkali and alkaline earth metal chloride salts such as RbCl affect pitting in some manner previously not expected compared to NaCl. Pit propagation studies were conducted on low alloy steel using one-dimensional (1D) pit method over pit depths from 300 µm to 1,000 µm. Linear sweep voltammetry and electrochemical impedance spectroscopy on planar 4130 electrodes over a range of Cl− concentrations revealed no differences in impedance, open circuit, corrosion potential (Ecorr), passive current density (ipass), and pitting potential (Epit) as a function of salt type. In the case of 1D pits evaluated during fast downward scan rates, the saturation potential (Esat) varied as a function of salt type and at shallow pit depths. Mass transported limited current density also varied with salt type in shallow pits when other alkali metal and alkaline metal cations where present. The potential (Esurf) of activated pit surfaces reached Ecorr prior to establishing a condition where the pit electrolyte surface concentration (Csurf) was less than the critical concentration for active acidified pitting (Csurf < Ccrit) in this marginally passivating steel. For various Esurf and pit current density (ipit) combinations at constant Csurf where Ccrit < Csurf < Csat, E-log(i) plots were constructed using the method of Li Tianshu to unmask IR  ohmic voltage corrected Tafel plots at fixed pit solution concentrations. Under these conditions, the influence of salt identity on charge-transfer-controlled kinetics was re-examined and slight differences in Tafel behavior were found. Differences in metal cations have little effect on passive planar electrodes and only affect pit propagation stage in shallow pits.

Publisher

Association for Materials Protection and Performance (AMPP)

Subject

General Materials Science,General Chemical Engineering,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3