Affiliation:
1. *Faculty of Materials Engineering, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran.
2. **Faculty of Science and Technology, Chemistry and Structure of Novel Materials, University of Siegen, P.O. Box 57076, Siegen, Germany.
Abstract
High-energy shot peening (HESP) as a common near-surface severe plastic deformation (NS-SPD) was used to create a severely deformed surface with ultrafine grains and dense crystallographic defects (e.g., grain boundaries, dislocations, and twins) on GTD-111 Ni superalloy. The fluoride-induced corrosion performance of HESPed GTD-111 and its solution-annealed counterpart is comparatively studied using immersion tests, grazing-incidence x-ray diffraction analysis, electrochemical techniques, and glow discharge optical emission spectroscopy (GDOES). As supported by the immersion tests and electrochemical measurements, HESPed GTD-111 exhibits corrosion film with higher resistance and lower passivity current density at the expense of a higher initial corrosion rate. Both samples suffer pitting corrosion; however, the solution-annealed one shows deeper and larger pits. The dense distribution of crystallographic defects on the surface of the HESPed sample significantly increases the diffusion of alloying elements to the corrosion front. The GDOES depth profiles reveal that (i) a thicker corrosion film with a higher contribution of alloying elements (namely, Cr, Ti, Co, and Al) is developed on the HESPed sample, and (ii) the corrosion films formed on the solution-annealed and HESPed samples consist of an outer F-rich part and an inner O-rich region. The protective mechanism of NS-SPD is discussed by a physical model.
Publisher
Association for Materials Protection and Performance (AMPP)
Subject
General Materials Science,General Chemical Engineering,General Chemistry
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献