Affiliation:
1. Fontana Corrosion Center, Department of Materials Science and Engineering, The Ohio State University, Columbus, Ohio 43210.
Abstract
The effects of fatigue loading frequency (f), sensitization, and crack length on corrosion fatigue crack growth rates (da/dN) were investigated for AA5456-H116 under full immersion in 3.5 wt% NaCl. Results from fracture mechanics-based experiments conducted at a constant stress-intensity range (ΔK) and load ratio (R) suggest that highly sensitized AA5456-H116 microstructures (ASTM G67 nitric acid mass loss tests [NAMLT] value of 24 mg/cm2 and higher) exhibit increased da/dN over microstructures in the as-received condition (NAMLT 5 mg/cm2) and the onset of an inverse f-dependence. For a single, high level of sensitization (70 mg/cm2), da/dN increased 3.5× as f decreased from 10 Hz to 0.03 Hz. At a singular low loading f of 0.03 Hz, high sensitization levels (65 mg/cm2) accelerated da/dN fivefold over da/dN in the as-received condition. The da/dN of microstructures below a critical NAMLT value of 24 mg/cm2 were f-independent. Specifically, in microstructures with a low sensitization level (ASTM G67 NAMLT value less than 24 mg/cm2), there was no increase in da/dN as f decreased from 1 Hz to 0.03 Hz. At any singular f, sensitization up to 24 mg/cm2 did not accelerate da/dN over the rate in an as-received microstructure. Additional testing established that the inverse f-dependence of da/dN observed in highly sensitized microstructures cannot be attributed to crack length effects. Two hypotheses are discussed that may explain the observed inverse relationship between f and da/dN in microstructures at or above the critical NAMLT value of 24 mg/cm2.
Subject
General Materials Science,General Chemical Engineering,General Chemistry
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献