The Effect of Crack-Initiating Feature on the Environment-Assisted Cracking Behavior of Sensitized AA5456-H116 in Marine Environments

Author:

Harris Zachary D.12ORCID,Ojha Lara S.1ORCID,Srinivasan Jayendran1,Kelly Robert G.1ORCID,Burns James T.1ORCID

Affiliation:

1. *Department of Materials Science and Engineering, University of Virginia, Charlottesville, Virginia, 22904.

2. **Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania, 15261.

Abstract

The influence of crack-initiating feature on the environment-assisted cracking (EAC) behavior of sensitized AA5456-H116 exposed to marine environments is assessed via fracture mechanics-based testing. Specimens that contained either a traditional fatigue precrack or purposefully introduced intergranular corrosion fissures were immersed in 0.6 M NaCl and polarized to select electrochemical potentials while held at a constant force. The measured crack length vs. time relationships from these experiments reveal that the two specimen geometries yield similar crack growth rates at −900 mVSCE and after the onset of accelerated crack propagation at −800 mVSCE. However, precorroded specimens exhibit significantly shorter times to failure than the precracked specimens at −800 mVSCE due to increased crack growth rates at the start of the experiment. The mechanical, environmental, and material factors that could contribute to the initially increased EAC susceptibility of the precorroded specimens are identified using a generalized model for EAC. Analysis of these possible causal factors suggests that the increased susceptibility is due to a residual, initially more deleterious crack chemistry at the occluded corrosion fissure tip from the aggressive galvanostatic polarizations used to accelerate fissure growth. The implications of these results on the efficacy of traditional fracture mechanics-based methods for quantifying EAC susceptibility are discussed.

Publisher

Association for Materials Protection and Performance (AMPP)

Subject

General Materials Science,General Chemical Engineering,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3