Evolution of tree killing in bark beetles (Coleoptera: Curculionidae): trade-offs between the maddening crowds and a sticky situation

Author:

Lindgren B.S.,Raffa K.F.

Abstract

AbstractBark beetles (Coleoptera: Curculionidae: Scolytinae) play important roles in temperate conifer ecosystems, and also cause substantial economic losses. Although their general life histories are relatively similar, different species vary markedly in the physiological condition of the hosts they select. Most of ∼6000 known species colonise dead or stressed trees, a resource they share with a large diversity of insects and other organisms. A small number of bark beetle species kill healthy, live trees. These few are of particular interest as they compete directly with humans for resources. We propose that tree killing evolved when intense interspecific competition in the ephemeral, scarce resource of defence-impaired trees selected for genotypes that allowed them to escape this limitation by attacking relatively healthy trees. These transitions were uncommon, and we suggest they were facilitated by (a) genetically and phenotypically flexible host selection behaviours, (b) biochemical adaptations for detoxifying a wide range of defence compounds, and (c) associations with symbionts, which together aided bark beetles in overcoming formidable constitutive and induced host defences. The ability to detoxify terpenes influenced the evolutionary course of pheromonal communication. Specifically, a mate attraction system, which was exploited by intraspecific competitors in locating poorly defended hosts, became a system of cooperative attack in which emitters benefit from the contributions responders make in overcoming defence. This functional shift in communication was driven in part by linkage of beetle semiochemistry to host defence chemistry. Behavioural and phenological adaptations also improved the beetles’ abilities to detect when tree defences are impaired, and, where compatible with life history adaptations to other selective forces, for flight to coincide with seasonally predictable host stress agents. We propose a conceptual model, whereby the above mechanisms enable beetles to concentrate on those trees that offer an optimal trade-off between host defence and interspecific competition, along dynamic gradients of tree vigour and stand-level beetle density. We offer suggestions for future research on testing elements of this model.

Publisher

Cambridge University Press (CUP)

Subject

Insect Science,Molecular Biology,Physiology,Ecology, Evolution, Behavior and Systematics,Structural Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3