NETWORK TRAFFIC ANOMALIES DETECTION USING AN ENSEMBLE OF CLASSIFIERS

Author:

Sakulin S. A.,Alfimtsev A. N.,Kvitchenko K. N.,Dobkach L. Ya.,Kalgin Yu. A.

Abstract

Network technologies have been steadily developing and their application has been expanding. One of the aspects of the development is a modification of the current network attacks and the appearance of new ones. The anomalies that can be detected in network traffic conform with such attacks. Development of new and improvement of the current approaches to detect anomalies in network traffic have become an urgent task. The article suggests a hybrid approach to detect anomalies on the basis of the combined signature approach and computationally effective classifiers of machine learning: logistic regression, stochastic gradient descent and decision tree with accuracy increase due to weighted voting. The choice of the classifiers is explained by the admissible complexity of the algorithms that allows detection of network traffic events for the time close to real. Signature analysis is carried out with the help of the Zeek IDS (Intrusion Detection System) signature base. Learning is fulfilled by preliminary prepared (by excluding extra recordings and parameters) CICIDS2017 (Canadian Institute for Cybersecurity Intrusion Detection System) signature set by cross validation. The set is roughly divided into ten parts that allows us to increase the accuracy. Experimental evaluation of the developed approach comparing with individual classifiers and with other approaches by such criteria as part of type I and II errors, accuracy and level of detection, has proved the approach suitable to be applied in network attacks detection systems. It is possible to introduce the developed approach into both existing and new anomaly detection systems.

Publisher

Izdatel'skii dom Spektr, LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. NETWORK ANOMALY DETECTION BASED ON WEIGHTED AGGREGATION TAKING INTO ACCOUNT NODAL PARAMETERS;Vestnik komp'iuternykh i informatsionnykh tekhnologii;2022-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3