NETWORK ANOMALY DETECTION BASED ON WEIGHTED AGGREGATION TAKING INTO ACCOUNT NODAL PARAMETERS

Author:

Sakulin S. A.,Alfimtsev A. N.,Lomanov A. A.,Dobkacz L. Ya.,Nedashkovskii V. M.

Abstract

The bulk move of employees to a remote mode of work, as well as the intensified information confrontation, led to the emergence and aggravation of many problems related to security in corporate networks. Cases of attacks on local area networks, in particular, using phishing and social engineering techniques, distribution of malicious code, and DDoS attacks, have become more frequent. To ensure the security of corporate networks, layered protection systems, including intrusion detection systems, firewalls, antivirus protection tools, various system analyzers etc., are increasingly being used. The use of several types of information protection tools not only reduces the load on individual tools, but also facilitates ability to identify actual attacks on the protected system. This article proposes a hybrid approach to anomaly detection, taking into account the parameters of the end nodes of the network. Enriching with values of these parameters makes it possible to detect low-intensity distributed attacks, thereby increasing the accuracy of the defense system. The transformation of parameters of network end nodes to the format of network session parameters is implemented using regrouping and dimensionality reduction. Ensembles of classifiers which inputs receive the session parameters and the parameters of the network nodes respectively, provide determining anomalies. Ensembles are based on logistic regression, stochastic gradient descent and decision trees. Combining of the classification results is accomplished through the weighted aggregation with anxiety threshold as a weighting factor. An experimental evaluation of the developed approach showed its advantages in comparison with the detection of anomalies without taking into account the parameters of the nodes.

Publisher

Izdatel'skii dom Spektr, LLC

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3