Synthesis and Characterization of Poly(methyl acrylate)-grafted-Sodium Salt of Partially Carboxymethylated Tamarind Kernel Powder

Author:

Trivedi J.H.1ORCID,Jivani J.R.2ORCID,Patel K.H.3ORCID,Trivedi H.C.4ORCID

Affiliation:

1. P.G. Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar-388120, India

2. Glenmark Pharmaceuticals, North Carolina, U.S.A.

3. Institute of Science Technology for Advanced Studies & Research (ISTAR), CVM University, Vallabh Vidyanagar-388120, India

4. 4Team Lease Skills University, ITI Campus, ITC Building, Tarsali Road, Vadodara-390009, India 5Parul Institute of Applied Sciences, Parul University, Limda, Vadodara-391760, India

Abstract

Ceric ammonium nitrate (CAN)-initiated graft copolymerization of methyl acrylate (MA) onto sodium salt of partially carboxymethylated tamarind kernel powder (Na-PCMTKP, DS = 0.15) was studied in an aqueous medium by solution polymerization technique. The growth of the graft reaction was monitored gravimetrically. The role of various synthesis variables on the grafting yields was examined to achieve the maximum graft yields (%G = 278.27, %GE = 94.38, %Hp = 5.62) and the influence of the synthesis variables in the graft copolymerization has been discussed. The reactivity of methyl acrylate (MA) towards graft copolymerization was compared with that of acrylonitrile (AN) on the basis of the results obtained from the earlier studies and plausible explanation was furnished for the observed reactivity of both the monomers towards grafting. The evaluated optimized reaction conditions were utilized to study the effect of reaction medium on grafting and it was found that reaction medium plays an important role in graft copolymerization. In order to ascertain the grafting, characterization of the samples made by FTIR, TGA and SEM was conducted. The synthesized novel graft copolymer may find potential application to be used as metal adsorbents.

Publisher

Asian Journal of Chemistry

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3