Synthesis of Novel Ionic Liquid Modified AC-Fe3O4 Magnetic Nanocomposite for the Adsorption of Heavy Metals in Wastewater

Author:

Taziwa R.T.1ORCID,Mungondori H.1ORCID,Zarima Takunda1

Affiliation:

1. Department of Applied Chemistry, Walter Sisulu University, Old King Williams Road, Fort Jackson, East London, South Africa

Abstract

This study reports a novel magnetic nanoadsorbent prepared from magnetite (Fe3O4) as the magnetic core, activated carbon from coal fly ash and an ionic liquid (1-methyl-3-ethylimidazolium chloride). The magnetic nanoadsorbent was synthesized via co-precipitation and characterized by FTIR, XRD, TEM, EDS and BET surface area analysis. Batch adsorption studies on cadmium (Cd2+) and lead (Pb2+) solutions such as effect of pH, contact time and adsorbent dosage were carried out. The data was analyzed using the Langmuir and Freundlich models. The results revealed that the optimal adsorption conditions for both metal ions on synthesized nanoadsorbent were pH 6, 200 min, adsorbent dosage of 1.5 g/L, initial ion concentration of 10 ppm and a temperature of 25 ºC. The data obtained in the adsorption of Cd2+ and Pb2+ best fitted the Freundlich isotherm, with R2 values of 0.998 and 0.995, respectively. Thermodynamic and kinetic studies suggested that adsorption of both metal ions on the IL-AC-Fe3O4 nanocomposite followed the pseudo first order model. The synthesised nanoadsorbent (IL-AC-Fe3O4) exhibits good adsorption properties and has great potential in a water treatment technology.

Publisher

Asian Journal of Chemistry

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3