Comparative proteome analysis reveals VPS28 regulates milk fat synthesis through ubiquitylation in bovine mammary epithelial cells

Author:

Liu Lily1,Zhang Qin2

Affiliation:

1. College of Life Science, Southwest Forestry University, Kunming, China

2. College of Animal Science and Technology, Shandong Agricultural University, Tai’an, , Shandong, China

Abstract

In our previous study, we found that VPS28 (vacuolar protein sorting 28 homolog) could alter ubiquitylation level to regulate milk fat synthesis in bovine primary mammary epithelial cells (BMECs). While the information on the regulation of VPS28 on proteome of milk fat synthesis is less known, we explored its effect on milk fat synthesis using isobaric tags for relative and absolute quantitation assay after knocking down VPS28 in BMECs. A total of 2,773 proteins in three biological replicates with a false discovery rate of less than 1.2% were identified and quantified. Among them, a subset of 203 proteins were screened as significantly down-(111) and up-(92) regulated in VPS28 knockdown BMECs compared with the control groups. According to Gene Ontology analysis, the differentially expressed proteins were enriched in the “proteasome,” “ubiquitylation,” “metabolism of fatty acids,” “phosphorylation,” and “ribosome.” Meanwhile, some changes occurred in the morphology of BMECs and an accumulation of TG (triglyceride) and dysfunction of proteasome were identified, and a series of genes associated with milk fat synthesis, ubiquitylation and proteasome pathways were analyzed by quantitative real-time PCR. The results of this study suggested VPS28 regulated milk fat synthesis was mediated by ubiquitylation; it could be an important new area of study for milk fat synthesis and other milk fat content traits in bovine.

Funder

National Natural Science Foundations of China

National Major Development Program of Transgenic Breeding

National Science and Technology Programs of China

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3