Affiliation:
1. Crop Research Institute, Prague, Czechia
2. Czech Hydrometeorological Institute, Prague, Czechia
3. Bee Research Institute at Dol, Libcice nad Vltavou, Czechia
4. Department of Zoology and Fisheries/Faculty of Agrobiology Food and Natural Resources, Czech University of Life Sciences, Prague, Czechia
Abstract
BackgroundMelissococcus plutoniusis an entomopathogenic bacterium that causes European foulbrood (EFB), a honeybee (Apis melliferaL.) disease that necessitates quarantine in some countries. In Czechia, positive evidence of EFB was absent for almost 40 years, until an outbreak in the Krkonose Mountains National Park in 2015. This occurrence of EFB gave us the opportunity to study the epizootiology of EFB by focusing on the microbiome of honeybee workers, which act as vectors of honeybee diseases within and between colonies.MethodsThe study included worker bees collected from brood combs of colonies (i) with no signs of EFB (EFB0), (ii) without clinical symptoms but located at an apiary showing clinical signs of EFB (EFB1), and (iii) with clinical symptoms of EFB (EFB2). In total, 49 samples from 27 honeybee colonies were included in the dataset evaluated in this study. Each biological sample consisted of 10 surface-sterilized worker bees processed for DNA extraction. All subjects were analyzed using conventional PCR and by metabarcoding analysis based on the 16S rRNA gene V1–V3 region, as performed through Illumina MiSeq amplicon sequencing.ResultsThe bees from EFB2 colonies with clinical symptoms exhibited a 75-fold-higher incidence ofM. plutoniusthan those from EFB1 asymptomatic colonies.Melissococcus plutoniuswas identified in all EFB1 colonies as well as in some of the control colonies. The proportions ofFructobacillus fructosus,Lactobacillus kunkeei,Gilliamella apicola,Frischella perrara, andBifidobacterium coryneformewere higher in EFB2 than in EFB1, whereasLactobacillus melliswas significantly higher in EFB2 than in EFB0.Snodgrassella alviandL. melliventris,L. helsingborgensisand,L. kullabergensisexhibited higher proportion in EFB1 than in EFB2 and EFB0. The occurrence ofBartonella apisandCommensalibacter intestiniwere higher in EFB0 than in EFB2 and EFB1.Enterococcus faecalisincidence was highest in EFB2.ConclusionsHigh-throughput Illumina sequencing permitted a semi-quantitative analysis of the presence ofM. plutoniuswithin the honeybee worker microbiome. The results of this study indicate that worker bees from EFB-diseased colonies are capable of transmittingM. plutoniusdue to the greatly increased incidence of the pathogen. The presence ofM. plutoniussequences in control colonies supports the hypothesis that this pathogen exists in an enzootic state. The bacterial groups synergic to both the colonies with clinical signs of EFB and the EFB-asymptomatic colonies could be candidates for probiotics. This study confirms thatE. faecalisis a secondary invader toM. plutonius; however, other putative secondary invaders were not identified in this study.
Funder
Ministry of Agriculture of the Czech Republic
Technology Agency of the Czech Republic
Subject
General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience
Cited by
58 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献