Expression of Aspergillus niger glucose oxidase in Pichia pastoris and its antimicrobial activity against Agrobacterium and Escherichia coli

Author:

Wang Yonggang12ORCID,Wang Jiangqin12,Leng Feifan12,Ma Jianzhong12,Bagadi Alnoor1

Affiliation:

1. School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, Gansu, China

2. Key Laboratory of Drug Screening and Deep Processing for Traditional Chinese and Tibetan Medicine of Gansu Province, Lanzhou University of Technology, Lanzhou, Gansu, China

Abstract

The gene encoding glucose oxidase from Aspergillus niger ZM-8 was cloned and transferred to Pichia pastoris GS115, a transgenic strain P. pastoris GS115-His-GOD constructed. The growth curve of P. pastoris GS115-His-GOD was consistent with that of Pichia pastoris GS115-pPIC9K under non-induced culture conditions. Under methanol induction conditions, the growth of the GOD-transgenic strain was significantly lowered than P. pastoris GS115-pPIC9K with the induced-culture time increase, and the optical densities of GOD-transgenic strain reached one-third of that of the P. pastoris GS115-pPIC9K at 51 h. The activity of glucose oxidase in the cell-free supernatant, the supernatant of cell lysate, and the precipitation of cell lysate was 14.3 U/mL, 18.2 U/mL and 0.48 U/mL, respectively. The specific activity of glucose oxidase was 8.3 U/mg, 6.52 U/mg and 0.73 U/mg, respectively. The concentration of hydrogen peroxide formed by glucose oxidase from supernatant of the fermentation medium, the supernatant of the cell lysate, and the precipitation of cell lysate catalyzing 0.2 M glucose was 14.3 μg/mL, 18.2 μg/mL, 0.48 μg/mL, respectively. The combination of different concentrations of glucose oxidase and glucose could significantly inhibit the growth of Agrobacterium and Escherichia coli in logarithmic phase. The filter article containing supernatant of the fermentation medium, supernatant of the cell lysate, and precipitation of cell lysate had no inhibitory effect on Agrobacterium and E. coli. The minimum inhibitory concentration of hydrogen peroxide on the plate culture of Agrobacterium and E. coli was 5.6 × 103 μg/mL and 6.0 × 103 μg/mL, respectively.

Funder

Chinese National Natural Science Foundation

Key Laboratory of Drug Screening and Deep Processing for Traditional Chinese and Tibetan Medicine

Lanzhou University of Technology

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Reference52 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3