Urine based near-infrared spectroscopy analysis reveals a noninvasive and convenient diagnosis method for cancers: a pilot study

Author:

Zhu Jing1,Zhang Siyu2,Wang Ruting34,Fang Ruhua1,Lei Lan5,Zheng Ji6,Chen Zhongjian34

Affiliation:

1. Department of Clinical Laboratory, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China

2. Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China

3. Experimental Research Center, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China

4. Zhejiang Key Laboratory of Diagnosis & Treatment Technology on Thoracic Oncology (Lung and Esophagus), Hangzhou, Zhejiang, China

5. Zhejiang Hospital, Hangzhou, Zhejiang, China

6. Department of Radiotherapy and Chemotherapy, Ningbo No. 2 Hospital, Ningbo, Zhejiang, China

Abstract

Background The challenges in cancer diagnosis underline the need for continued research and development of new diagnostic tools and methods. This study aims to explore an effective, noninvasive, and convenient diagnostic tool using urine based near-infrared spectroscopy (NIRS) analysis combined with machine learning algorithm. Methods Urine samples were collected from a total of 327 participants, including 181 cancer cases and 146 healthy controls. These participants were randomly spit into train set (n = 218) and test set (n = 109). NIRS analysis (4,000 ∼10,000 cm−1) was performed for each sample in both train and test sets. Five pretreatment methods, including Savitzky-Golay (SG) smoothing, multiplicative scatter correction (MSC), baseline removal (BSL) with fitting polynomials to be used as baselines, the first derivative (DERIV1), and the second derivative (DERIV2), and combination with “scaling” and “center”, were investigated. Then partial least-squares (PLS) and linear support-vector machine (SVM) classification models were established, and prediction performance was evaluated in test set. Results NIRS had greatly overlapping in peaks, and PCA analysis failed in separation between cancers and healthy controls. In modeling with urine based NIRS data, PLS model showed its highest prediction accuracy of 0.780, with DERIV2, “scaling” and “center” pretreatment, while linear SVM displayed its best prediction accuracy of 0.844, with raw NIRS. With optimization in SVM, the prediction accuracy could improve to 0.862, when the top 262 features were involved as variables. Discussion This pilot study combining urine based NIRS analysis and machine learning is effective and convenient that might facilitate in cancer diagnosis, encouraging further evaluation with a large-size multi-center study.

Funder

National Natural Science Foundation of China

Zhejiang Natural Science Foundation

Zhejiang Medical and Health Science Project

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3