Machine learning applied to near-infrared spectra for clinical pleural effusion classification

Author:

Chen Zhongjian,Chen Keke,Lou Yan,Zhu Jing,Mao Weimin,Song Zhengbo

Abstract

AbstractLung cancer patients with malignant pleural effusions (MPE) have a particular poor prognosis. It is crucial to distinguish MPE from benign pleural effusion (BPE). The present study aims to develop a rapid, convenient and economical diagnostic method based on FTIR near-infrared spectroscopy (NIRS) combined with machine learning strategy for clinical pleural effusion classification. NIRS spectra were recorded for 47 MPE samples and 35 BPE samples. The sample data were randomly divided into train set (n = 62) and test set (n = 20). Partial least squares, random forest, support vector machine (SVM), and gradient boosting machine models were trained, and subsequent predictive performance were predicted on the test set. Besides the whole spectra used in modeling, selected features using SVM recursive feature elimination algorithm were also investigated in modeling. Among those models, NIRS combined with SVM showed the best predictive performance (accuracy: 1.0, kappa: 1.0, and AUCROC: 1.0). SVM with the top 50 feature wavenumbers also displayed a high predictive performance (accuracy: 0.95, kappa: 0.89, AUCROC: 0.99). Our study revealed that the combination of NIRS and machine learning is an innovative, rapid, and convenient method for clinical pleural effusion classification, and worth further evaluation.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3