Anti-leukemic effect of menthol, a peppermint compound, on induction of apoptosis and autophagy

Author:

Naksawat Mashima1,Norkaew Chosita1,Charoensedtasin Kantorn1,Roytrakul Sittiruk2ORCID,Tanyong Dalina1

Affiliation:

1. Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, Thailand

2. Functional Proteomics Technology Laboratory, Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology for Development Agency, Pathum Thani, Thailand

Abstract

Background Menthol, a natural compound in peppermint leaves, has several biological activities, including antioxidant, anti-inflammatory, antiviral, antibacterial and anticancer properties. This study revealed the anti-leukemic effects and its underlying mechanisms of the menthol related apoptosis signaling pathway and autophagy in both NB4 and Molt-4 leukemic cell lines. Methods Both leukemic cells were treated with menthol in various concentration. Cell viability was assessed using MTT assay, whereas apoptosis and autophagy were analyzed by flow cytometry using Annexin V-FITC/PI and anti-LC3/FITC antibodies staining, respectively. Apoptotic and autophagic related gene and protein expression were detected using RT-qPCR and western blot analysis, respectively. Moreover, STITCH database was used to predicts the interaction between menthol and proposed proteins. Results Menthol significantly decreased cell viability in NB4 and Molt-4 cell lines in dose dependent manner. In combination of menthol and daunorubicin, synergistic cytotoxic effects were observed in leukemic cells. However, there was a minimal effect found on normal, peripheral blood mononuclear cells (PBMCs). Moreover, menthol significantly induced apoptosis induction via upregulation of caspase-3, BAX, p53 and downregulation of MDM2 mRNA expression. Autophagy was also induced by menthol through upregulating ATG3 and downregulating mTOR mRNA expression. For protein expression, menthol significantly increased caspase-3 whereas decreased mTOR in both leukemic cells. Conclusions. These results suggest that menthol exhibits cytotoxic activities by inhibition of cell proliferation, induction of apoptosis and autophagy through activating the caspase cascade, altering BAX and p53/MDM2, and regulating autophagy via the ATG3/mTOR signaling pathway.

Funder

Mahidol University

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3