Open-source software library for real-time inertial measurement unit data-based inverse kinematics using OpenSim

Author:

Lavikainen JereORCID,Vartiainen Paavo,Stenroth Lauri,Karjalainen Pasi A.

Abstract

Background Inertial measurements (IMUs) facilitate the measurement of human motion outside the motion laboratory. A commonly used open-source software for musculoskeletal simulation and analysis of human motion, OpenSim, includes a tool to enable kinematics analysis of IMU data. However, it only enables offline analysis, i.e., analysis after the data has been collected. Extending OpenSim’s functionality to allow real-time kinematics analysis would allow real-time feedback for the subject during the measurement session and has uses in e.g., rehabilitation, robotics, and ergonomics. Methods We developed an open-source software library for real-time inverse kinematics (IK) analysis of IMU data using OpenSim. The software library reads data from IMUs and uses multithreading for concurrent calculation of IK. Its operation delays and throughputs were measured with a varying number of IMUs and parallel computing IK threads using two different musculoskeletal models, one a lower-body and torso model and the other a full-body model. We published the code under an open-source license on GitHub. Results A standard desktop computer calculated full-body inverse kinematics from treadmill walking at 1.5 m/s with data from 12 IMUs in real-time with a mean delay below 55 ms and reached a throughput of more than 90 samples per second. A laptop computer had similar delays and reached a throughput above 60 samples per second with treadmill walking. Minimal walking kinematics, motion of lower extremities and torso, were calculated from treadmill walking data in real-time with a throughput of 130 samples per second on the laptop and 180 samples per second on the desktop computer, with approximately half the delay of full-body kinematics. Conclusions The software library enabled real-time inverse kinematical analysis with different numbers of IMUs and customizable musculoskeletal models. The performance results show that subject-specific full-body motion analysis is feasible in real-time, while a laptop computer and IMUs allowed the use of the method outside the motion laboratory.

Funder

European Union

University of Eastern Finland

Digital Technology RDI Environment

Academy of Finland

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Reference27 articles.

1. OpenSense: an open-source toolbox for inertial-measurement-unit-based measurement of lower extremity kinematics over long durations;Al Borno;Journal of NeuroEngineering and Rehabilitation,2022

2. A dynamic optimization solution for vertical jumping in three dimensions;Anderson;Computer Methods in Biomechanics and Biomedical Engineering,1999

3. Dynamic optimization of human walking;Anderson;Journal of Biomechanical Engineering,2001

4. Real-time estimate of body kinematics during a planar squat task using a single inertial measurement unit;Bonnet;IEEE Transactions on Biomedical Engineering,2013

5. Real-time inverse kinematics for the upper limb: a model-based algorithm using segment orientations;Borbély;BioMedical Engineering Online,2017

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3