OpenSense: An open-source toolbox for inertial-measurement-unit-based measurement of lower extremity kinematics over long durations

Author:

Al Borno Mazen,O’Day JohannaORCID,Ibarra Vanessa,Dunne James,Seth Ajay,Habib Ayman,Ong Carmichael,Hicks Jennifer,Uhlrich Scott,Delp Scott

Abstract

AbstractBackgroundThe ability to measure joint kinematics in natural environments over long durations using inertial measurement units (IMUs) could enable at-home monitoring and personalized treatment of neurological and musculoskeletal disorders. However, drift, or the accumulation of error over time, inhibits the accurate measurement of movement over long durations. We sought to develop an open-source workflow to estimate lower extremity joint kinematics from IMU data that was accurate and capable of assessing and mitigating drift.MethodsWe computed IMU-based estimates of kinematics using sensor fusion and an inverse kinematics approach with a constrained biomechanical model. We measured kinematics for 11 subjects as they performed two 10-min trials: walking and a repeated sequence of varied lower-extremity movements. To validate the approach, we compared the joint angles computed with IMU orientations to the joint angles computed from optical motion capture using root mean square (RMS) difference and Pearson correlations, and estimated drift using a linear regression on each subject’s RMS differences over time.ResultsIMU-based kinematic estimates agreed with optical motion capture; median RMS differences over all subjects and all minutes were between 3 and 6 degrees for all joint angles except hip rotation and correlation coefficients were moderate to strong (r = 0.60–0.87). We observed minimal drift in the RMS differences over 10 min; the average slopes of the linear fits to these data were near zero (− 0.14–0.17 deg/min).ConclusionsOur workflow produced joint kinematics consistent with those estimated by optical motion capture, and could mitigate kinematic drift even in the trials of continuous walking without rest, which may obviate the need for explicit sensor recalibration (e.g. sitting or standing still for a few seconds or zero-velocity updates) used in current drift-mitigation approaches when studying similar activities. This could enable long-duration measurements, bringing the field one step closer to estimating kinematics in natural environments.

Funder

national institute of biomedical imaging and bioengineering

national institute of neurological disorders and stroke

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Rehabilitation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3