Postmortem transport in fossil and modern shelled cephalopods

Author:

Yacobucci Margaret M.

Abstract

The chambered shells of cephalopod mollusks, such as modern Nautilus and fossil ammonoids, have the potential to float after death, which could result in significant postmortem transport of shells away from living habitats. Such transport would call into question these clades’ documented biogeographic distributions and therefore the many (paleo)biological interpretations based on them. It is therefore imperative to better constrain the likelihood and extent of postmortem transport in modern and fossil cephalopods. Here, I combine the results of classic experiments on postmortem buoyancy with datasets on cephalopod shell form to determine that only those shells with relatively high inflation are likely to float for a significant interval after death and therefore potentially experience postmortem transport. Most ammonoid cephalopods have shell forms making postmortem transport unlikely. Data on shell forms and geographic ranges of early Late Cretaceous cephalopod genera demonstrate that even genera with shell forms conducive to postmortem buoyancy do not, in fact, show artificially inflated biogeographic ranges relative to genera with non-buoyant morphologies. Finally, georeferenced locality data for living nautilid specimens and dead drift shells indicate that most species have relatively small geographic ranges and experience limited drift. Nautilus pompilius is the exception, with a broad Indo-Pacific range and drift shells found far from known living populations. Given the similarity of N. pompilius to other nautilids in its morphology and ecology, it seems unlikely that this species would have a significantly different postmortem fate than its close relatives. Rather, it is suggested that drift shells along the east African coast may indicate the existence of modern (or recently extirpated) living populations of nautilus in the western Indian Ocean, which has implications for the conservation of these cephalopods.

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3