Widely assumed phenotypic associations in Cannabis sativa lack a shared genetic basis

Author:

Vergara Daniela1ORCID,Feathers Cellene1,Huscher Ezra L.1,Holmes Ben2,Haas Jacob A.3,Kane Nolan C.1

Affiliation:

1. Ebio, University of Colorado at Boulder, Boulder, CO, USA

2. Centennial Seeds, Lafayette, CO, USA

3. DabLogic, Denver, CO, USA

Abstract

The flowering plant Cannabis sativa, cultivated for centuries for multiple purposes, displays extensive variation in phenotypic traits in addition to its wide array of secondary metabolite production. Notably, Cannabis produces two well-known secondary-metabolite cannabinoids: cannabidiolic acid (CBDA) and delta-9-tetrahydrocannabinolic acid (THCA), which are the main products sought by consumers in the medical and recreational market. Cannabis has several suggested subspecies which have been shown to differ in chemistry, branching patterns, leaf morphology and other traits. In this study we obtained measurements related to phytochemistry, reproductive traits, growth architecture, and leaf morphology from 297 hybrid individuals from a cross between two diverse lineages. We explored correlations among these characteristics to inform our understanding of which traits may be causally associated. Many of the traits widely assumed to be strongly correlated did not show any relationship in this hybrid population. The current taxonomy and legal regulation within Cannabis is based on phenotypic and chemical characteristics. However, we find these traits are not associated when lineages are inter-crossed, which is a common breeding practice and forms the basis of most modern marijuana and hemp germplasms. Our results suggest naming conventions based on leaf morphology do not correspond to the chemical properties in plants with hybrid ancestry. Therefore, a new system for identifying variation within Cannabis is warranted that will provide reliable identifiers of the properties important for recreational and, especially, medical use.

Funder

Colorado State University Pueblo

University of Colorado Foundation

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3