Intra‐leaf modeling of Cannabis leaflet shape produces leaf models that predict genetic and developmental identities

Author:

Balant Manica123ORCID,Garnatje Teresa14ORCID,Vitales Daniel1ORCID,Hidalgo Oriane15ORCID,Chitwood Daniel H.36ORCID

Affiliation:

1. Institut Botànic de Barcelona, IBB (CSIC‐CMCNB) Passeig del Migdia s.n. 08038 Barcelona Spain

2. Laboratori de Botànica, Unitat Associada al CSIC, Facultat de Farmàcia i Ciències de l'Alimentació Universitat de Barcelona (UB) Av. Joan XXIII 27–31 08028 Barcelona Spain

3. Department of Horticulture Michigan State University East Lansing MI 48824 USA

4. Jardí Botànic Marimurtra – Fundació Carl Faust pg. Carles Faust, 9 17300 Blanes Spain

5. Royal Botanic Gardens, Kew Richmond TW9 3AE UK

6. Department of Computational Mathematics, Science & Engineering Michigan State University East Lansing MI 48824 USA

Abstract

Summary The iconic, palmately compound leaves of Cannabis have attracted significant attention in the past. However, investigations into the genetic basis of leaf shape or its connections to phytochemical composition have yielded inconclusive results. This is partly due to prominent changes in leaflet number within a single plant during development, which has so far prevented the proper use of common morphometric techniques. Here, we present a new method that overcomes the challenge of nonhomologous landmarks in palmate, pinnate, and lobed leaves, using Cannabis as an example. We model corresponding pseudo‐landmarks for each leaflet as angle‐radius coordinates and model them as a function of leaflet to create continuous polynomial models, bypassing the problems associated with variable number of leaflets between leaves. We analyze 341 leaves from 24 individuals from nine Cannabis accessions. Using 3591 pseudo‐landmarks in modeled leaves, we accurately predict accession identity, leaflet number, and relative node number. Intra‐leaf modeling offers a rapid, cost‐effective means of identifying Cannabis accessions, making it a valuable tool for future taxonomic studies, cultivar recognition, and possibly chemical content analysis and sex identification, in addition to permitting the morphometric analysis of leaves in any species with variable numbers of leaflets or lobes.

Funder

Generalitat de Catalunya

Ministerio de Ciencia, Innovación y Universidades

National Institute of Food and Agriculture

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3