Forest structure dependency analysis of L-band SAR backscatter

Author:

Ji Yongjie1,Huang Jimao1,Ju Yilin2,Guo Shipeng1,Yue Cairong2

Affiliation:

1. Southwest Forestry University, School of Geography and Ecotourism, Kunming, Yunnan, China

2. Southwest Forestry University, Forestry College, Kunming, Yunnan, China

Abstract

Forest structure plays an important role in forest biomass inversion using synthetic aperture radar (SAR) backscatter. Synthetic aperture radar (SAR) sensors with long-wavelength have the potentiality to provide reliable and timely forest biomass inversion for their ability of deep penetration into the forest. L-band SAR backscatter shows useful for forest above-ground biomass (AGB) estimation. However, the way that forest structure mediating the biomass-backscatter affects the improvement of the related biomass estimation accuracy. In this paper, we have investigated L-band SAR backscatter sensitivity to forests with different mean canopy density, mean tree height and mean DBH (diameter at breast height) at the sub-compartment level. The forest species effects on their relationship were also considered in this study. The linear correlation coefficient R, non-linear correlation parameter, Maximal Information Coefficient (MIC), and the determination coefficient R2 from linear function, Logarithmic function and Quadratic function were used in this study to analyze forest structural properties effects on L-band SAR backscatter. The HV channel, which is more sensitive than HH to forest structure parameters, was chosen as the representative of SAR backscatter. 6037 sub-compartment were involved in the analysis. Canopy density showed a great influence on L-band backscatter than mean forest height and DBH. All of the R between canopy density and L-band backscatter were greater than 0.7 during the forest growth cycle. The sensitivity of L-band backscatter to mean forest height depends on forest canopy density. When canopy density was lower than 0.4, R values between mean forest height are smaller than 0.5. In contrast, the values of R were greater than 0.8 if canopy density was higher than 0.4. The sensitivity SAR backscatter to DBH fluctuated with canopy density, but it only showed obvious sensitivity when canopy density equals to 0.6, where both the linear and non-liner correlation values are higher than others. However, their effects on L-bang HV backscatter are affected by forest species, the effects on three forest structural parameters depend on tree species.

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Reference35 articles.

1. Requirement for a cocitation similarity measure, with special reference to Pearson’s correlation coefficient;Ahlgren;Journal of the American Society for Information ence & Technology,2003

2. C-band repeat-pass interferometric SAR observations of the forest;Askne;IEEE Transgeosci & Remote Sensing,1997

3. Forest canopy height and carbon estimation at Monks Wood National Nature Reserve, UK, using dual-wavelength SAR interferometry;Balzter;Remote Sensing of Environment,2007

4. Radiometric correction of RADARSAT-1 images for mapping the snow water equivalent (SWE) in a mountainous environment;Bernier,2002

5. Large area forest stem volume mapping using synergy of spaceborne interferometric radar and optical remote sensing: a case study of northeast china;Cartus;PhD thesis,2010

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3