Deep learning prediction of likelihood of ICU admission and mortality in COVID-19 patients using clinical variables

Author:

Li Xiaoran1,Ge Peilin1ORCID,Zhu Jocelyn1,Li Haifang1,Graham James1,Singer Adam2ORCID,Richman Paul S.3,Duong Tim Q.4ORCID

Affiliation:

1. Department of Radiology, Renaissance School of Medicine, Stony Brook University, New York, Stony Brook, NY, USA

2. Department of Emergency Medicine, Renaissance School of Medicine, Stony Brook University, New York, Stony Brook, NY, USA

3. Department of Medicine, Renaissance School of Medicine, Stony Brook University, New York, Stony Brook, NY, USA

4. Department of Radiology, Albert Einstein College of Medicine, Bronx, NY, USA

Abstract

Background This study aimed to develop a deep-learning model and a risk-score system using clinical variables to predict intensive care unit (ICU) admission and in-hospital mortality in COVID-19 patients. Methods This retrospective study consisted of 5,766 persons-under-investigation for COVID-19 between 7 February 2020 and 4 May 2020. Demographics, chronic comorbidities, vital signs, symptoms and laboratory tests at admission were collected. A deep neural network model and a risk-score system were constructed to predict ICU admission and in-hospital mortality. Prediction performance used the receiver operating characteristic area under the curve (AUC). Results The top ICU predictors were procalcitonin, lactate dehydrogenase, C-reactive protein, ferritin and oxygen saturation. The top mortality predictors were age, lactate dehydrogenase, procalcitonin, cardiac troponin, C-reactive protein and oxygen saturation. Age and troponin were unique top predictors for mortality but not ICU admission. The deep-learning model predicted ICU admission and mortality with an AUC of 0.780 (95% CI [0.760–0.785]) and 0.844 (95% CI [0.839–0.848]), respectively. The corresponding risk scores yielded an AUC of 0.728 (95% CI [0.726–0.729]) and 0.848 (95% CI [0.847–0.849]), respectively. Conclusions Deep learning and the resultant risk score have the potential to provide frontline physicians with quantitative tools to stratify patients more effectively in time-sensitive and resource-constrained circumstances.

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3