Machine Learning First Response to COVID-19: A Systematic Literature Review of Clinical Decision Assistance Approaches during Pandemic Years from 2020 to 2022

Author:

Badiola-Zabala Goizalde1,Lopez-Guede Jose Manuel12ORCID,Estevez Julian13ORCID,Graña Manuel13

Affiliation:

1. Computational Intelligence Group, Basque Country University (UPV/EHU), 01006 Vitoria-Gasteiz, Spain

2. Department of Systems and Automatic Control, Faculty of Engineering of Vitoria, Basque Country University (UPV/EHU), Nieves Cano 12, 01006 Vitoria-Gasteiz, Spain

3. Department of Computer Science and Artificial Intelligence, Faculty of Informatics, Basque Country University (UPV/EHU), Paseo Manuel de Lardizabal 1, 20018 Donostia-San Sebastian, Spain

Abstract

Background: The declaration of the COVID-19 pandemic triggered global efforts to control and manage the virus impact. Scientists and researchers have been strongly involved in developing effective strategies that can help policy makers and healthcare systems both to monitor the spread and to mitigate the impact of the COVID-19 pandemic. Machine Learning (ML) and Artificial Intelligence (AI) have been applied in several fronts of the fight. Foremost is diagnostic assistance, encompassing patient triage, prediction of ICU admission and mortality, identification of mortality risk factors, and discovering treatment drugs and vaccines. Objective: This systematic review aims to identify original research studies involving actual patient data to construct ML- and AI-based models for clinical decision support for early response during the pandemic years. Methods: Following the PRISMA methodology, two large academic research publication indexing databases were searched to investigate the use of ML-based technologies and their applications in healthcare to combat the COVID-19 pandemic. Results: The literature search returned more than 1000 papers; 220 were selected according to specific criteria. The selected studies illustrate the usefulness of ML with respect to supporting healthcare professionals for (1) triage of patients depending on disease severity, (2) predicting admission to hospital or Intensive Care Units (ICUs), (3) search for new or repurposed treatments and (4) the identification of mortality risk factors. Conclusion: The ML/AI research community was able to propose and develop a wide variety of solutions for predicting mortality, hospitalizations and treatment recommendations for patients with COVID-19 diagnostic, opening the door for further integration of ML in clinical practices fighting this and forecoming pandemics. However, the translation to the clinical practice is impeded by the heterogeneity of both the datasets and the methodological and computational approaches. The literature lacks robust model validations supporting this desired translation.

Funder

Basque Government

Elkartek project

Spanish MCIN

Publisher

MDPI AG

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3