Prediction of COVID-19 Hospitalization and Mortality Using Artificial Intelligence

Author:

Halwani Marwah Ahmed1ORCID,Halwani Manal Ahmed2

Affiliation:

1. College of Business, King Abdulaziz University, Rabigh 21589, Saudi Arabia

2. Emergency Department, College of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia

Abstract

Background: COVID-19 has had a substantial influence on healthcare systems, requiring early prognosis for innovative therapies and optimal results, especially in individuals with comorbidities. AI systems have been used by healthcare practitioners for investigating, anticipating, and predicting diseases, through means including medication development, clinical trial analysis, and pandemic forecasting. This study proposes the use of AI to predict disease severity in terms of hospital mortality among COVID-19 patients. Methods: A cross-sectional study was conducted at King Abdulaziz University, Saudi Arabia. Data were cleaned by encoding categorical variables and replacing missing quantitative values with their mean. The outcome variable, hospital mortality, was labeled as death = 0 or survival = 1, with all baseline investigations, clinical symptoms, and laboratory findings used as predictors. Decision trees, SVM, and random forest algorithms were employed. The training process included splitting the data set into training and testing sets, performing 5-fold cross-validation to tune hyperparameters, and evaluating performance on the test set using accuracy. Results: The study assessed the predictive accuracy of outcomes and mortality for COVID-19 patients based on factors such as CRP, LDH, Ferritin, ALP, Bilirubin, D-Dimers, and hospital stay (p-value ≤ 0.05). The analysis revealed that hospital stay, D-Dimers, ALP, Bilirubin, LDH, CRP, and Ferritin significantly influenced hospital mortality (p ≤ 0.0001). The results demonstrated high predictive accuracy, with decision trees achieving 76%, random forest 80%, and support vector machines (SVMs) 82%. Conclusions: Artificial intelligence is a tool crucial for identifying early coronavirus infections and monitoring patient conditions. It improves treatment consistency and decision-making via the development of algorithms.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3