Affiliation:
1. Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan Province, China
Abstract
Background
Flower and fruit development are vital stages of the angiosperm lifecycle. We previously investigated the multi-silique trait in the rapeseed (Brassica napus) line zws-ms on a genomic and transcriptomic level, leading to the identification of two genomic regions and several candidate genes associated with this trait. However, some events on the transcriptome level, like alternative splicing, were poorly understood.
Methods
Plants from zws-ms and its near-isogenic line (NIL) zws-217 were both grown in Xindu with normal conditions and a colder area Ma’erkang. Buds from the two lines were sampled and RNA was isolated to perform the transcriptomic sequencing. The numbers and types of alternative splicing (AS) events from the two lines were counted and classified. Genes with AS events and expressed differentially between the two lines, as well as genes with AS events which occurred in only one line were emphasized. Their annotations were further studied.
Results
From the plants in Xindu District, an average of 205,496 AS events, which could be sorted into five AS types, were identified. zws-ms and zws-217 shared highly similar ratios of each AS type: The alternative 5′ and 3′ splice site types were the most common, while the exon skipping type was observed least often. Eleven differentially expressed AS genes were identified, of which four were upregulated and seven were downregulated in zws-ms. Their annotations implied that five of these genes were directly associated with the multi-silique trait. While samples from colder area Ma’erkang generated generally reduced number of each type of AS events except for Intron Retention; but the number of differentially expressed AS genes increased significantly. Further analysis found that among the 11 differentially expressed AS genes from Xindu, three of them maintained the same expression models, while the other eight genes did not show significant difference between the two lines in expression level. Additionally, the 205 line-specific expressed AS genes were analyzed, of which 187 could be annotated, and two were considered to be important.
Discussion
This study provides new insights into the molecular mechanism of the agronomically important multi-silique trait in rapeseed on the transcriptome level and screens out some environment-responding candidate genes.
Funder
The National Key Research and Development Plan
The International Cooperation Plan of Sichuan Academy of Agricultural Sciences
The Modern Agro-Industry Technology Research System of China
The Major Science and Technology Special Subject of Sichuan Province
The Scientific Observing and Experimental Station of Oil Crops in the Upper Yangtze River, Ministry of Agriculture, P. R. China
The Financial Innovation Ability Promotion Project of Sichuan Province
The Sichuan Science and Technology Program
The Sichuan Crop Breeding Community
Subject
General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献